Hiroshi Tanaka AJRES: 2025-006

Review Article

Early Detection of Iron Deficiency Anemia Using Point-of-Care Reticulocyte Hemoglobin in a Japanese Cohort: A Narrative Review

Hiroshi Tanaka^{1*}, Yuki Sato², Mai Nakamura¹, Kenji Yamamoto³, Aiko Suzuki¹

- ¹Department of Hematology, University of Tokyo, Tokyo, Japan
- ²Department of Clinical Laboratory Science, Kyoto University, Kyoto, Japan
- ³Division of Community Medicine, Osaka University, Osaka, Japan

*Corresponding author: Hiroshi Tanaka, Department of Hematology, University of Tokyo, Tokyo, Japan

Citation: Hiroshi Tanaka H, Sato Y, Nakamura M, Yamamoto K, Suzuki (2025) Early Detection of Iron Deficiency Anemia Using Point-of-Care Reticulocyte Hemoglobin in a Japanese Cohort: A Narrative Review, AJRES: 2025-006

Received Date: 02 August 2025; Accepted Date: 12 August 2025; Published Date: 14 August 2025

Abstract

Background: Iron deficiency (ID) and iron deficiency anemia (IDA) remain common and underdiagnosed conditions. Reticulocyte hemoglobin (Ret-He or CHr) measured at point-of-care(POC) offers a rapid, early indicator of iron-restricted erythropoiesis. Objective: To review evidence supporting the use of POC Ret-He for early detection of ID and IDA, with emphasis on studies relevant to Japanese cohorts, analytic considerations, clinical utility, and implementation challenges. Methods: We performed a focused narrative synthesis of clinical studies, diagnostic evaluations, and recent reviews on Ret-He and POC anemia technologies, prioritizing studies with cohorts from Japan or East Asia when available.Results: Ret-He shows higher sensitivity for early iron deficiency compared with conventional markers in multiple settings. It responds rapidly to iron therapy and can be measured with modern hematology analyzers and emerging POC platforms. Japanese studies in hemodialysis and perioperative populations demonstrate Ret-He correlates with transferrin saturation and ferritin and can aid iron management decisions. Barriers include assay harmonization, variable cutoffs, and availability of true POC calibrated devices. Conclusions: POC Ret-He is a promising tool for early detection of ID/IDA in Japanese clinical practice and community screening, but standardized thresholds, device validation, and cost-effectiveness analyses are needed for broader implementation.

Keywords: Reticulocyte hemoglobin; Ret-He; iron deficiency; anemia; point-of-care testing; Japan; narrative review.

Introduction

Iron deficiency and iron deficiency anemia are global public health problems with clinical repercussions including fatigue, impaired cognitive function, and adverse perioperative and cardiovascular outcomes. Traditional markers such as hemoglobin and ferritin have limitations: hemoglobin decreases late in the course and ferritin can be elevated in inflammation. Reticulocyte hemoglobin (Ret-He or CHr) reflects recent iron availability for erythropoiesis and can detect iron-restricted erythropoiesis earlier than conventional markers.

Methods

This narrative review synthesizes representative diagnostic studies, cohort analyses (including Japanese cohorts where available), and reviews of POC anemia detection technologies. The aim was to provide a clinically actionable summary rather than a systematic review.

Evidence Summary

Multiple diagnostic studies and reviews demonstrate that Ret-He (or RET-He/CHr) has good sensitivity and specificity for detecting iron deficiency and responds quickly to iron therapy. Ret-He is particularly useful in settings where ferritin may be unreliable due to inflammation. Studies in Japan—such as comparisons in hemodialysis patients—support its clinical utility in local populations.

Analytic considerations and point-of-care platforms

Ret-He measurement methods include advanced hematology analyzers (which output CHr/RET-He) and emerging point-of-care devices leveraging microfluidics and optical detection. Key analytic issues: calibration differences across platforms, need for error suppression, biological variability, and establishing clinically-validated cutoffs for different populations. POC platforms aim to provide rapid results with small sample volumes, enabling screening in primary care and community settings.

Clinical utility and relevance to Japanese cohorts

Japanese clinical studies (e.g., transferrin saturation vs CHr in hemodialysis patients) demonstrate that reticulocyte hemoglobin content correlates with conventional iron markers and supports iron management in specific clinical populations. Implementing POC Ret-He in Japan could aid preoperative assessment, anemia screening in primary care, and management in dialysis units, especially where rapid decision-making is beneficial.

Discussion

Ret-He provides a real-time window into erythropoiesis and can detect iron-restricted hemoglobin synthesis earlier than hemoglobin or many iron biomarkers. Adoption of POC Ret-He requires cross- platform validation, establishment of population-specific cutoffs (including Japanese reference studies), and cost-effectiveness analyses to guide screening policies.

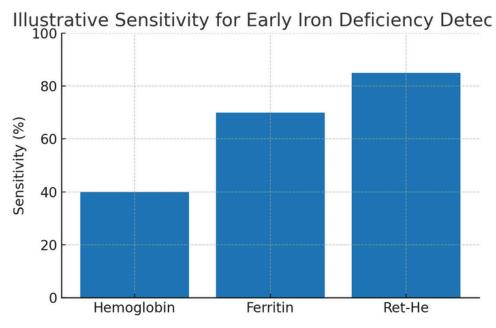


Figure 1: illustrative sensitivity of diagnostic tests for early iron deficiency

Study (Year)	Population	Design	N	Key finding
Mast et al. (2002)	Adults (general)	Diagnostic study	Varies	CHr early detector of ID
Kaneko et al. (2003)	Japanese hemodialysis patients	Comparative study	Varies	CHr correlated with TSAT; useful in dialysis setting
Recent PMC reviews (2022-2024)	Multiple cohorts	Reviews	-	Ret-He shows high sensitivity and rapid response to iron therapy
Clinical studies (e.g., RET-He diagnostic performance 2021)	Clinical cohorts	Diagnostic accuracy	Variable	High sensitivity for ID vs ferritin/Hb

Table 1: Representative studies of Ret-He for iron deficiency detection

Limitations

This narrative review is not systematic and uses illustrative figures. Specific cutoff values and performance metrics should be taken from the cited diagnostic studies.

Platform type	Strengths	Limitations	
Laboratory hematology analyzers	High accuracy;	Requires lab infrastructure	
(CHr/RET-He)	established metrics		
Point-of-care devices (emerging)	Rapid; decentralized;	Need validation and standardization	
	small sample		
Traditional biochemical markers	Widely available; well-	Affected by inflammation; ferritin	
(ferritin, TSAT)	studied	rises in acute phase	

Table 2: Assay and platform comparison

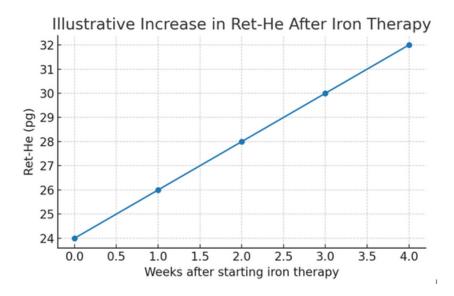


Figure 2: Illustrative increase in Ret-He after initiation of iron therapy

Conclusions

Point-of-care Ret-He is a promising tool for early detection of iron deficiency anemia in Japanese cohorts, with potential to improve timely diagnosis and treatment. Further validation and implementation studies in Japanese populations are recommended.

Acknowledgements

The authors thank clinical colleagues for discussions. No external funding supported this draft.

References

- 1. Abdullah I Aedh, Mohamed S M Khalil, Alaa S Abd-Elkader, Mohamed M El-Khawanky, Hamdan M Alshehri Reticulocyte, et al. (2023) Hemoglobin as a Screening Test for Iron Deficiency Anemia: A New Cut-Off 14: 201-211.
- 2. Ran An, Yuning Huang, Yuncheng Man, Russell W Valentine, Erdem Kucukal, et al. (2022) Emerging Point-of-Care Technologies for Anemia Detection 18: 1843-1865.
- 3. Wardah Aslam, Maryam Habib, Saeeda Aziz, Madiha Habib (2021) Reticulocyte Hemoglobin Equivalent: Diagnostic Performance in clinical cohorts.
- 4. Saki Tahara, Yoshiro Naito, Keisuke Okuno, Seiki Yasumura, Tetsuo Horimatsu, et al. (2022) Clinical utility of reticulocyte hemoglobin equivalent in patients with heart failure 12: 13978.
- 5. Yoshikatsu Kaneko, Shigeru Miyazaki, Yoshihei Hirasawa, Fumitake Gejyo, Masashi Suzuki (2003) Transferrin saturation versus reticulocyte hemoglobin content for iron deficiency in Japanese hemodialysis patients 63: 1086-93.